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ABSTRACT. Given n X n complex matrices A, B, the C-numerical radius

of A 1is the nonnegative quantity

ro(A) = mex {|tr(CU*AU)| : U unitary}.

For C = diag(1,0,...,0) it reduces to the classical numerical radius

r(A) = max{|x*Ax| : x*x = 1}. We show that r, is a generalized matrix
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norm if and only if C is nonscalar and tr C # 0. Next, we consider an .
arbitrary generalized matrix norm and characterize all constants v >0

for which W is multiplicative. A technique to obtain such v is then
applied to C-numerical radii with Hermitian C. In particular we find

that vr is a matrix norm if and only if v > L,
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1. TRAXQUISKAR
Let ¢ be the algebra of n X n complex matrices and let \ﬁn
be its unitary group. Given A, C € ¢, the C-numerical range of A

is the compact set
Wo(A) = (tr(CU*AU) : U e y 3.

This definition together with some properties of WC(A) were presented
by the authors in [2].

It is not hard to see (compare [2], Lemma 9), that W (A) 1is
jnvariant under unitary similarities of A or C. Hence, if C is

normal with eigenvalues 7y 32 we easily find that

n
(1.1) WC(A) = wdiag('yl,...,'yn)(A) = {3§1 'ij';ij : {xd} € An}’

An being the set of orthonormal bases for Qn In particular, for

C = diag(1,0,...,0), we obtain the classical range
W(A) = {x*Ax : x*x = 1].
Associated with the classical range is the numerical radius
r(A) = max{|z| : z e W(A)}.

Similarly, we define the C-numerical radius to be

ro(A) = max{|z| : z e W (A)}

The main purpose of this work is to study the norm properties of
Toe The situation is trivial for n = 1, so without further reference’

we assume troughout the paper that n > 2.

We use the following standard definitions.

(1) A mapping A - N(A) 4is a semi-norm on n’ Lf for any

A,chnm and @ e C,
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N(a) >0;
N(ea) = |a|N(a);

N(A + B) < N(A) + N(B).

(11) A semi-norm is a generalized matrix norm if it is positive

definite, that is,
N(A) >0 for A £ 0.

(11i) A generalized matrix norm is a matrix norm if it is

(sub-) multiplicative, i.e., for all A, B,
N(AB) < N(A)N(B).
Without difficulty we obtain

THEOREM 1. For any C, r, is a semi-norm.

(o

The questions of definiteness and multiplicativity are much more

complicated.
In Section 2 we characterize those C for which Ta is positive
definite. We show that To is a generalized matrix norm if and only if

C 1s not scalar and tr C # 0. This result agrees with the well known
fact that the classical radius r is a generalized matrix norm.

The classical radius is not multiplicative, [4]. Hence, in general,
a C-radius cannot be expected to be & matrix norm.

In Section 3 we consider arbitrary generalized matrix norms, and
characterize all positive constants v for which W is multiplicative.

A technique of finding such multiplicativity factors is given by a

theorem of Gastinel [1].

The above technique (aided by some combinatorial inequalities
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obtained in Section 4) is applied in Section 5 to find multiplicativity

factors for C-numerical radii with Hermitian C. In particular we find
that vr is a matrix norm if and only if v > L.
Thanks are due to Alston Householder and to Robert Steinberg for

helpful discussions.

2. Nexm Shaxackexization.of C-xadii-

THEOREM 2. r

C is a generalized matrix norm if and only if

(2.1) C 4is nonscalar and tr C # 0.

In the proof we use the following three lemmas in which A, C are

given n X n matrices.

1 LEMA 1. Let m be en integer with l<m<n. If C leaves

invariant all m-dimensional subspaces of (,;" 5 then C is scalar.

Proof. Since m <n, then each one-dimensional subspace of Qn
is an intersection of subspaces of dimension m, which by hypothesis,

are fixed by C. This implies that C fixes all one-dimensional sub-

spaces of Qn

Now let fe be the standard basis of g" By the preceding

n
333=1
argument, there exist scalars Al,... ’)‘n’ M4, such that

Ce‘1 = XJeJ, l1<j<n,

z
= U e.,.
gm0 9 ga !

Hence, @ed = Zlaed, and we conclude that 7\3 =M, 1 €J <n. There-

fore,

Lk e o
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CeJ - .y, 1<J<n;
i.e., C =uI, and the lemma follows.
LEMMA 2. If

cu*au = v*aUC U ¢ Uy

then either A or C are scalar.

Proof. Suppose A is not scalar and let us prove that C is. Let
A be an eigenvalue of A with corresponding eigenspace y_x of

dimension m. Since A is not scalar, then
1 <m = ain(y,) <ain(¢") = n.

Now, for arbitrary U e ' UAU also has A as eigenvalue with

corresponding eigenspace U'"}Lx Thus, for every vector v ¢ U*Y.y
v*au(cv) = c(u*auv) = c(iv) = ACv).
It follows that

cv eU¥, WwveUY,

that s, C leaves U, invariant. Since aim(Y,) = m and U* is
arbitrary, we find that C leaves invariant all m-dimensional subspaces

of . Hence, by Lemma 1, C is scalar and the proof is complete.
LEMMA 3. If

tr(cU*AU) = constant /U ¢ Y

I

cu*AU = vMaUuC WU € Y,

——— o e —— — ——
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Proof. Let S be skew-Hermitian; then e°° is unitery for all

real 6, and so is Ue$. By hypothesis therefore,

£(e) = tr[C(Uees)*A(Uees)] = constant, ® € R;
and consequently,
%f(e) = %tr(Ce-esU*AUees) -
= tr(Ce™Fuase® . cse™®y*ave™) - o

Evaluating the derivative at © = 0 we obtain

tr(cu*aus - csu*au) = o;
hence for all skew-Hermitian S (and all unitary U),

tg[(cu*Au - U*auc)s] = o.

Since every matrix B is a linear combination of skew-Hermitians®, the
last identity implies
*, #* = ¥
tr[(CUAU - U*AUC)B] =0 /B e ¢

Thus,

cu*au - v*awC = o,
and the lemma is proven.

Proof of Theorem 2. By Theorem 1, it suffices to show that (2.1)

holds if and only if To

Jf C 1is scalar, namely C = A\I, thenany A #0 with trA =0

is positive definite.

gives

rc(A) = |xtrA| =o0.

1 * i #
*’O!'Oﬂﬂpl&, B-sl-isa ﬂth 81-5(3-3),82-2(3"'8).
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Also, if tr C = 0, then
rc(I) = |tr c| = 0.

Thus, violation of (2.1) implies the indefiniteness of rc(-).

Conversely, let (2.1) hold. If rC(A) = 0, then by definition
tr(CUAU) = 0 WU ey
so by Lemma 3,
CU*AU = U*AUIC U € W

By Lemma 2, therefore, either C or A are scalar, and since C is not,

A is. Setting A = uI we have
r(A) = lutrc| = o,
and since tr C # 0, then p must vanish and the proof is established.

EXAMPLE 1. The k-numerical range, 1 <k <n, was defined by

Halmos [3, § 167] to be
Wk(A) = {tr(PA) : P orthonormal projection of rank k}.
We easily verify that
wk(A) = wck(A) vhere C  =1I, 90 .

Thus, the k-numerical radius

rk(A) = max(|z|

z € Wk(A) 1,

is a generalized matrix norm if and only if 1<k <n - 1. In particular

r(A) = rl(A) is a generalized norm while rn(A) = |[tr A| 4s not.

R e T ST

e L




3. r 1l's m
Given & semi-norm N on ¢ and a constant v >0, then

obviously

NVEVN

is a semi-norm too. Similarly, N is definite if and only if Nv is.
In any case the new norm may or may not be multiplicative. If it is, we

say that v is a multiplicativity factor of N.

A characterization of multiplicativity factors for generalized
matrix norms is given in Theorem 4. We first prove, however, that

indefinite nontrivial semi-norms have no multiplicativity factors.

THEOREM 3. An indefinite semi-norm N on ¢ is mltiplicative

if and only if N = 0.

Proof. The trivial semi-norm is certainly multiplicative. So let
N be indefinite and multiplicative, and let us show that N = O.
Since N is indefinite, then N(A) = 0 for some A # 0. Let &g

be a nonvanishing entry of A, and denote by E the matrix whose

1j
(1,J) element is 1 and the others are zero. Since

Ei PRy = YpeByyo

then by multiplicativity,

o

logy IN(E ) = W(@y By y) < N(E, IN(AIN(E,) = 0.
We conclude that
N(EU) =0 WVlgi, J<n;

thus for any B = (51.1) € ann’

e o e — e | e — y — — — ———
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N(B) = N(E 51.1 13

) < Z By IN(E ) = o,
and the theorem follows.

THEOREM 4. If N 4is a generalized matrix norm, then v is a

multiplicativity factor of N (i.e., N, is a matrix norm) if and only

if

N(AB

V>V, = max .
N A,B#ONANB

Proof. We write VN in the form

v = max (N(AB) : N(A) = N(B) = 1},

and use a compactness argument to conclude that W is well defined.
It is clear then that vN > 0.

Now, if v > N? then
N (AB) = WN(AB) < v N(A)N(B) < VAN(A)N(B) = N (A)N (B);

hence N is multiplicative.

Conversely, if v satisfies 0 < Vv < VN’ we can find matrices

A, B such that W(A)N(B) < N(AB). Thus we have
NV(AB) =WwWi(AB) > v%!(A)N(B) = NV(A)NV(B),
and the proof is complete.
As an immediate consequence we have established

COROLIARY 1. A generalized matrix norm Nv is a matrix norm if

and only if v, < 1.

In practice, Theorem 4 offers limited help since in general, N is
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not easily evaluated. In the case of C-numerical radii, we were unable
to find the optimal factor except for the classical radius.
An alternative way of finding multiplicativity factors is suggested

by the following, somewhat stronger version of a theorem by Gestinel, [1],

THEOREM 5. Let N be a semi-norm, M a matrix norm, and n >£& >0

constants such that

(3.2) gMa) <N(A) < M(A)  wAeg .

Then,

(1) N is a generalized matrix norm.

2
(1) For any v >n/¢", N, is a matrix norm.

(111) 1I1f n/§251, then N is a matrix norm.

~

Proof. Part (i) is trivial, and for part (ii) we should merely note

that
N (AB) = WN(AB) < viM(AB) < viM(A)M(B)
< ? N(AN(B) < v'N(A)N(B) = N (A)N (B).
Part (1ii) then follows.

We recall, of course, that any two norms on ann are equivalent.
Thus if N of Theorem 5 is known to be a matrix norm, then (3.1) always
holds for suitable constants n > £ > 0.

In Section 5 we use Theorem 5 to obtain multiplicativity factors for

C-numerical radii with Hermitian C.
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b Some Combinatorial Jnecualities

Let ad’ 'yJ, 1l <Jj <n, be scalars and consider the set

3(%) ‘{ ey 7" Sn}’

Sn being the symmetric group. In this section we study bounds for the

radius of gY(Ot),
RY(a) = max{|z| : z € gy(a)}.

A general remark is that all the involved quantities are invariant
under rearrangements of the Oti and the 'yj, and under rotations of the

form
el i
(@pyeees@ ) = € Me,en,@), (Yppeensry) = e Vlvppeeesry)

which include, of course, change of sign. This fact will be repeatedly

used in the proof of the following results.
LEMMA 4. For any <'.!:j‘,'y.j €g,
Ry(a) >—

Proof. Let 'ri, i=1,2,...,n, be the powers of a nontrivial

Evi

Zal

cyclic permutation in Sn' Since

then

]
s
ot
e
=M
Q
vy

s —— e —— —r - —
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and the lemma holds.

LEMMA 5. If O, eR, vy

1 €C,1<j<n, then

J

R(O‘)> max|a, -alma1|v - vl
a7 g v 4

Proof. Setting
= A, + A R
Yym i AR
we have

R (@) = ces, ZXGG(J) + 1Zua0(3)|

3B 1 =R
Zz’s‘ ao(;j)l X(a)

Now, if the 'YJ,,J.re equal, then the result is trivial; so by

rotating and rearanging the 'Y.‘] s, Wwe may assume that
max|yy - vyl =v, - v, >o.

It follows that

- A =y, =Y =mxl|y, -v,| >mx|x -
G Tl gt e S i R
Thus
MENEA 28158 -1,
‘80 we may assume that

M2dp 2z 2k

We may also assume that

o ——- . O s O e - —
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Hence, observing that

=) A

e Rl N Tk o

are two points in gy(a) , we have

2

R\(®) 238, - 55| = %lﬁ(al e T R al)l
1
= x| -2 )@ -a )+ (A -x )@, - J+eeet (Arq-2 o+ -a )

>%(>\l b )‘n)(al N an) =y % mxI'Yi g5 ‘Ydlm'xlai v ajl)

and the lemma follows.

We are interested now in obtaining constants lgy, which may depend

on the vy 3 but not on the @ 3 such that
(4.1) uy(a) —>K’Y ma.xlaj| \/Oyyeee,® € R,

THEOREM 6. For given vy € C, 1<J <n, there exists a constant

xY > 0 which satisfies (4.1) if and only if

(.2) vy are not all equal and Z'YJ # 0.
J

If (4.2) holds, then (k.1) is satisfied by the positive constant

Izvjl~ﬁlvi i
Y = T T wexly, - v, 1"
J 3 3
J 1,3

(4.3)

Proof. Suppose (4.2) is violated. If the Yy ere equal, we choose

GJ not all equal, with EO!J 3§

1 <J <n. Inboth cases R,Y(a) =0 but mxlaJI > 0; hence no positive

=0; if _Z'YJ-O, we take Q, =1,

K'Y satisfies (L4.1).

Conversely, let (4.2) hold, and let K’Y be the constant specified




in (4.3). We may assume that

where in fact, by change of sign if necessary, it suffices to consider

the cases
(b.ba) G prre e 2%
and

(bbd) @ >ecc >0 >0>q ., > > with m.xlajl = a,.

In case (4.4a) we write @ =6, 0<e<]l, anduse Lemms 4 and

5 to obtain, respectively,

2 .
R(®) 252l 1Zvl > |Tvyl = & [Doy| = o[ v, |mexo,|

R,Y(a) 2% mlai 3, adlmi'yi i< 'YJI = %(al = an)ml'Yi 5 'YJI
231 - o)mx|yy - vyluax|oy].
We thus find that
1
(@) 2 msolZ ], Ko - omaly, - 1} - sy

The expressions in the above braces are functions of © which describe
straight lines with opposite slopes and intersection value K'Y' Hence,

for any ©

W{QIE'YJI) é(l = e)ma.xl'yi b+ 'YJ'} ZKY’

and (4.1) follows.
In case (4.4b) we use Lemma 5 to find that




ORI T e

|

) "
(@) > 30, - o )maxl|y, - v, | > max|y, - v,|mex|o,|
RA®) 2359 -9 1= Yol >3 mexlyy -, gl
Since
1
5 mexly, - vl >K,
then (4.1) holds again, and the theorem is proven.

The above result can be improved for certain classes of vy s

THEOREM 7. If 'yd, l1<Jj<n, are complex scalars of the same

argument, then (4.1) holds with
(k.5) | K= -;- ﬁlvi - ’YJ|-
)

Proof. By change of argument and rearangement we may assume that

'Yl 2 oo 2"Yn 20’

and that the dd satisfy (4.ka) or (4.4b).

For (4.4a) we have
R (@) =Ty 27 >3y, - V)% 3

and for (4.4b), Lemma 5 yeilds

1 i
R'Y(a) 22(71 i 'Yn)(al 3, an) > E(‘Yl = 'Yn)qlo
Thus,
1
R,Y(a) > 5 maxly, - 'ydlm.xlad|,

and the proof is complete.

Indeed, comparing x,y of (4.5) with xy of (4.3), we realize that
for the relevant Yy Theorem 6 provides a tighter lower bound for

Ry(a) than Theorem 5.
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5. Mutirbicative dexmitian Radil

As indicated previously, the purpose of this section is to
obtain multiplicativity factors for C-numerical radii with
Hermitian C.

LEMA 6. Let A, C be normal matrices with eigenvalues GJ

and

'y';] , respectively. Then

Proof. Obviously, it suffices to show that
conv WC(A) = conv Sy(a).

Since WC(A) '4s invariant under unitary similarities of A and C,

and since A and C are normal, then by (1.1),

n
HC(A) {JE}_ 'ydx; dh'g(al""’an)xj : {xd} € An}'

Thus, using the standard basis (e‘1 }, we find that every point in
ay(a) satisfies

#
?'YJGG(J) = Eydeo(d) di.'g(al""’an)ev(d) € WC(A),
which gives us
8,(%) c W (A).
Conversely, take an arbitrary point,

§)'ydx§ diag(al,...,an)xJ € HC(A).

T e ¥ 1
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Since x:l = (XJ

X = [|xdk|2] is a doubly stochastic matrix. Doubly stochastic matrices

l""’xjn)T’ l<Jj<n, 1is an orthonormal basis, then

are convex combinations of permutation matrices P . Thus writing

X =T P, and
T T
a = (al,ooo,an) ’ cC = ('Yl“oo-,'Yn) ’
we have

* i . TSR Seien
JE'nyJ diag(al,...,an)xd = J‘,Z)k 'ydlvskl o =cXa =

T
=c [Esnm;o]a = nga(cIPop) = 'zo?,ka[z? 'YJQU(J)] € conv s,Y(Ot).
This yields

WC(A) < conv gy(a),
and the lemma follows.

LEMA 7. Let C be normal with eigenvalues 'YJ, let K

satisfy (4.1), and let

1/2 i

||A||2 = max {(x*A%*Ax) x*x = 1}

denote the spectral norm of A. Then

ro(A) 2K I, \Hermitian Heg .

Proof. For Hermitian H with eigenvalues «Q 42 we know that

"H"2 = mlaJ I .

Since the a.1 are real, we may use (4.1), and by Lemma 6

ro(A) = R (%) 2K mladl = K.YllAlla-

LEMA 8. If C is Hermitian, then rc(A) = rc(A*).

e —————— e ———— o — — ——— — - — ———
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Proof.

ro(A) = max|tr(CUAU) | = max|tr(cU*AU)*| = max|tr(u*a*uc)| = rC(A*).
U U U

LEMMA 9. If C 1is Hermitian with eigenvalues 'YJ, and if K’Y

satisfies (4.1), then
ro(A) 25K al, wAeg .
Y Xnxn
Proof. We write A = (i) - 1), where
H) =A+ A%, H,=1(A - A",

are Hermitian.. By Lemmas 7 and 8, and by Theorem 1,

sl = 5K by - wl, < f KLkl + 1) < glrg(y) + xg(p))

= %[rC(A +A%) + rc(A - iA*)] S%[rC(A) + rc(A*)] = rC(A),

and the proof is complete.

LEMMA 10, If C is normal with eigenvalues 'YJ , then
Proof. By (1.1) we have
ro(A) = {|27.1 a| (x;} A}
and since |x*Ax| < IIAII2 for any unit vector x, the lemma follows.

THEOREM 8. Let C be Hermitian, nonscalar, with tr C # 0 and

eigenvalues 'yd. Then, for any v with
2|Z)y | + mnxlyi e

2;8 -TE'YJTM -T X

.
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the (Hermitian) numerical radius VIo =T . is a matrix norm.

Proof. Since C 1is nonscalar, the 'y’1 are not all equal; and
since tr C # 0, then Z'yj # 0. Thus, by Theorem 6, the inequality in
(4.1) is satisfied by the positive constant KY of (4.3). By Lemmas 9
and 10 we have therefore,

IZv,| + maxly, - v,l
L - £ = 54
2 o, T mly, T Pl 7@ sZlylhly A < g,

and Theorem 5 completes the proof.
For Hermitian definite C, we improve Theorem 6 as follows.

THEOREM 9. Let C be Hermitian nonnegative (nonpositive) definite.

If C is nonscalar with eigenvalues ’YJ » then for every v with

163 |v.| <
g 4
v>—r-—ﬂ-,
= max|y, =Y
i O
vrc Er\C is a matrix norm.

Proof. Since C is Hermitian definite, the 'y.1 are of the same
sign and by Theorem 7, K,Y of (L4.5) satisfies (4.1). Lemmas 9 and 10

yield now,

(5.2)  § maxly, - v, laly < 7clA) ST lyyllal, WA e g

Since C 1is nonscalar, the 'YJ are not all equal; so mxl'yi - 'YJI >0,

and Theorem 5 completes the proof.

EXAMPLE 2, We recall the definition of the k-numerical radius e

By Theorem 7, we find that VI l<k<n-1, is a matrix norm if
v 2 1&-

g
h

.
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Example 2 implies that v > 16 is a mltiplicativity factor for the

classical radius r. The optimal factor, Vs is given in the following result.

THEOREM 10. vr 4is a matrix norm if and only if v >L4; that is

14 51“.
r

Proof. . It is well known, [3, §162], that

%Ihlla <r(a) < lbll, wAeg .

Thus, by Theorem 5, v >4 is a multiplicativity factor for r, and by

Theorem 4, v, < L,

To show that v > 4, consider the matrices

0 1 0 0
Y eI sal T ..
o of o 1 o/ m-2

A simple calculation shows that -

r(A) = x(8) =3, r(aB) = 1.

Hence

rv(A.B) < rV(A)rV(B)

if and only if v >4, and the theorem follows.
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A technigue to obtain such

matrix norm if and only if v > k.
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is a generalized matrix norm

Next, we consider an arbitrary
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